The ultimate combination of the laboratory-on-a-chip and advanced drug delivery technologies would be a device that was implantable in the body, which would continuously monitor the level of various biochemicals in the bloodstream and in response would release appropriate drugs. For example, an insulin-dependent diabetic could use such a device to continuously monitor and adjust insulin levels autonomously. There is no doubt that this is the direction that current advances in which microfluidics and drug delivery are heading.
Drug delivery is likely to benefit from the development of nanotechnology. With nanoparticles it is possible that drugs may be given better solubility, leading to better absorption. Also, drugs may be contained within a molecular carrier, either to protect them from stomach acids or to control the release of the drug to a specific targeted area, reducing the likelihood of side effects. Such drugs are already beginning pre-clinical or clinical trials, adhering to the strict regulatory requirements for new pharmaceuticals. Due to this, development costs are often high and outcomes of research sometimes limited.
Within MEMS (Micro Electro Mechanical Systems), laboratory-on-a-chip technology for quicker diagnosis which requires less of the sample is being developed in conjunction with microfluidics. In the medium term, it could be expected that general personal health monitors may be available. Developments in both genomics and nanotechnology are likely to enable sensors that can determine genetic make-up quickly and precisely, enhancing knowledge of people’s predisposition to genetic-related diseases.
Advanced drug delivery technology
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment