"It's the smallest synthetic motor that's ever been made," said Alex Zettl, professor of physics at UC Berkeley and faculty scientist at Lawrence Berkeley National Laboratory. "Nature is still a little bit ahead of us - there are biological motors that are equal or slightly smaller in size - but we are catching up." Zettl and his research group report their feat in the current issue of Nature.
The electrostatic motors represent a significant step foward in nanotechnology, and prove that nanotubes and other nanostructures several hundred times smaller than the diameter of a human hair can be manipulated and assembled into true devices.
The motor is about 500 nanometers across, 300 times smaller than the diameter of a human hair. While the part that rotates, the rotor, is between 100 and 300 nanometers long, the carbon nanotube shaft to which it is attached is only a few atoms across, perhaps 5-10 nanometers thick.
The motor's shaft is a multiwalled nanotube, that is, it consists of nested nanotubes much like the layers of a leek. Annealed both to the rotor and fixed anchors, the rigid nanotube allows the rotor to move only about 20 degrees. However, the team was able to break the outer wall of the nested nanotubes to allow the outer tube and attached rotor to freely spin around the inner tubes as a nearly frictionless bearing.
To build the motor, Zettl and his team made a slew of multiwalled nanotubes in an electric arc and deposited them on the flat silicon oxide surface of a silicon wafer. They then identified the best from the pile with an atomic force microscope, a device capable of picking up single atoms.
A gold rotor, nanotube anchors and opposing stators were then simultaneously patterned around the chosen nanotubes using electron beam lithography. A third stator was already buried under the silicon oxide surface. The rotor was annealed to the nanotubes and then the surface selectively etched to provide sufficient clearance for the rotor.
When the stators were charged with up to 50 volts of direct current, the gold rotor deflected up to 20 degrees, which was visible in the SEM. With alternating voltage, the rotor rocked back and forth, acting as a torsional oscillator. Such an oscillator, probably capable of microwave frequency oscillations from hundreds of megahertz to gigahertz, could be useful in many types of devices - in particular, communications devices such as cell phones or computers.
With a strong electrical jolt to the stators, the team was able to jerk the rotor and break the outer wall of the nested nanotubes, allowing the rotor to spin freely on the nested nanotube bearings. Zettl had made similar bearings several years ago, but this was the first time he had put them to use.
A gold rotor, nanotube anchors and opposing stators were then simultaneously patterned around the chosen nanotubes using electron beam lithography. A third stator was already buried under the silicon oxide surface. The rotor was annealed to the nanotubes and then the surface selectively etched to provide sufficient clearance for the rotor.
When the stators were charged with up to 50 volts of direct current, the gold rotor deflected up to 20 degrees, which was visible in the SEM. With alternating voltage, the rotor rocked back and forth, acting as a torsional oscillator. Such an oscillator, probably capable of microwave frequency oscillations from hundreds of megahertz to gigahertz, could be useful in many types of devices - in particular, communications devices such as cell phones or computers.
With a strong electrical jolt to the stators, the team was able to jerk the rotor and break the outer wall of the nested nanotubes, allowing the rotor to spin freely on the nested nanotube bearings. Zettl had made similar bearings several years ago, but this was the first time he had put them to use.
No comments:
Post a Comment